

Task 4.2: Common NIVA API

Task Leader: e-GEOS

Partners: Sinergise, TRAGSA, NeuroPublic

NIVA meeting – 12/05/2020

Main Concept of Common API

✓ Earth Observation API:

- ✓ Provide a unique API layer as broker of EO based services based on OpenEO
- ✓ Integrate NIVA available EO based services such as Sen4CAP
- ✓ Provide a common approach to evolve the common API layer by incrementally adding new EO services over time

✓ Traffic Lights API:

- ✓ Provide access to different information (EO, FMIS ...)
- ✓ Provide a standard layer NIVA data model (semantics) specifications
- ✓ Linked Data AgroEnvironmental API
 - ✓ Provide an AgroEnvironmental Linked Data end-point aggregating data coming from different sources (LPIS, Crop Type, Farm Registry ...)
 - $\checkmark\,$ Facilitate the machine-to-machine interaction

Earth Observation API

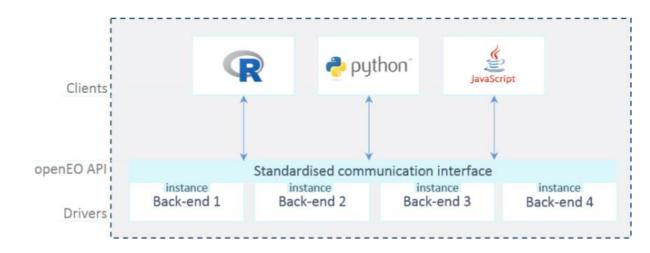
NIVA meeting – 12/05/2020

Earth Observation API Services for CAP

Data and products necessary for CAP needs are at different level of complexity; the aim is to access existing and other under development external systems and internal components (e.g. those from UCs) and to cathegorize available data/products for an easy use

- <u>Base</u> L3 products markers (Sen4CAP, any other marker generator)
 - Sentinel 1 weekly averaged markers and features
 - Sentinel 2 derived spectral indexes, FAPAR, LAI

— ...


- <u>Advanced</u> L4 products markers (Sen4CAP, any other marker generator)
 - Grassland Mowing, Crop Type
 - Harvesting,
- Processing services:
 - Markers calculation for parcels
 - Anomaly detection (analysis of time series, inter-field, intra-field analysis...)

-

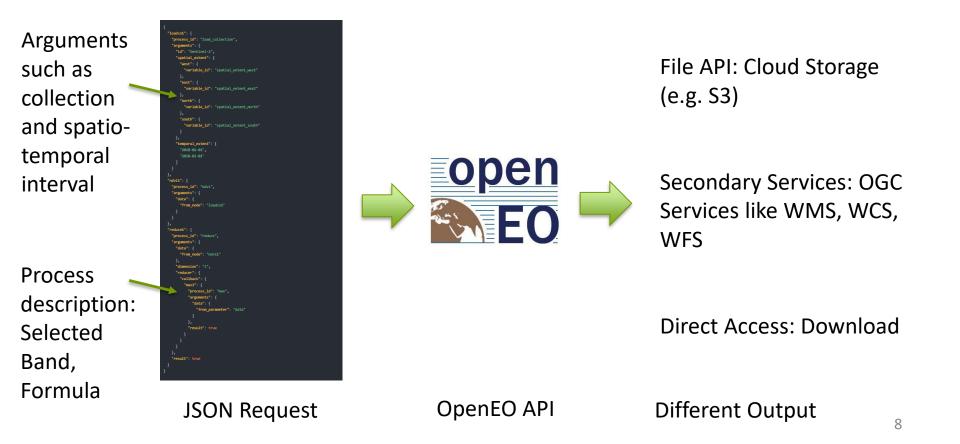
EO Broker API

- It is based on OpenEO specification
- Allow to discover:
 - Data

- Processing services
- User Defined Functions
- Allow to consume such services
 - It implements also mechanism to access subscription based services

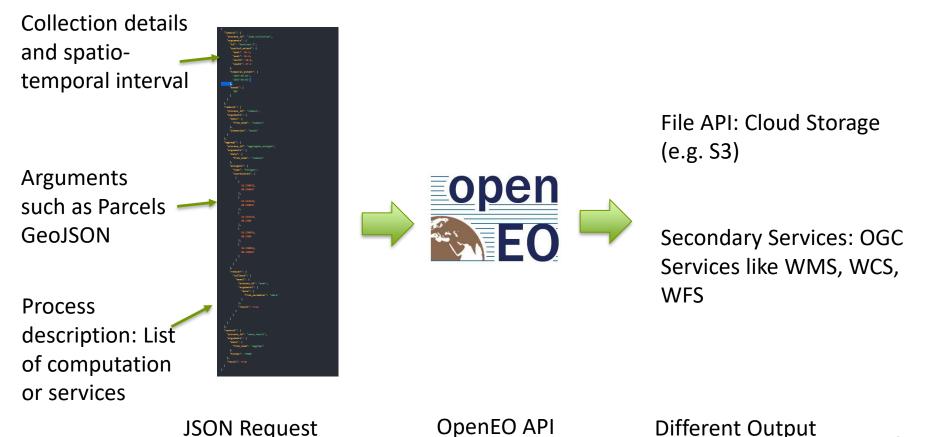
← → C ⓐ open-eo.github.io/openeo-api/apireference/						
🔛 App 🧕 Outlook Web App 📙 Historical						
😓 openEO API Reference						
Q Search						
Authentication		openEO API (0.4.2)				
Capabilities	>	openEO Consortium: openeo@list.tuwien.ac.at URL: http://www.openeo.org License: Apache 2.0				
EO Data Discovery	>	The openEO API specification for interoperable cloud-based processing of large Earth observation datasets.				
Process Discovery	>	Make sure to take account of several global API specifications, which are not (fully) covered in this specification:				
Account Management	>	Cross-Origin Resource Sharing (CORS) support to allow browser-based access to the API. Error handling				
File Management	>	Unless otherwise stated the API works case sensitive. openE0 Documentation				
Process Graph Management	>					
Batch Job Management	>					
Secondary Services Management	>	x				

OpenEO API specification


- The openEO API defines a HTTP API that lets cloud backends with large Earth observation datasets communicate with front end analysis applications in an interoperable way.
- As an overview, the openEO API specifies how to
 - discover which Earth observation data and processes are available at cloud back-ends,
 - execute (chained) processes on back-ends,
 - run user-defined functions (UDFs) on back-ends where UDFs can be exposed to the data in different ways,
 - download (intermediate) results, and
 - manage user content including billing.
- The API is defined as an **OpenAPI 3.0** YAML file.

OpenEO Advantages

- Specification is open to contribution and it still support several use cases
- Data catalogue is done using STAC (Spatio-Temporal Asset Catalogue) specification which is generic enough to include also non-EO data (e.g. Geotagged Photos)
- It embraces the micro-service paradigm allowing a sustainable development of functions
- Decouple the UI from the back-end and provide a common interface to different platforms (there are already 5 DIAS and many other EO platform)


OpenEO API Example 1 (Spectral Index)

• Example: Calculate custom spectral index by giving a specific UDF (e.g. normalized_difference)

OpenEO API Example 1 (Zonal Stats)

• Example: Calculate zonal stats on existing raster layer and store the results using the NIVA information model

9

Earth Observation API – Microservices (1)

	Service	Description
1	mean and standard deviation of 8 reflectance S2	Markers calculated at parcel level on the basis of Sen4CAP available pre-
	bands	calculated data
2	mean and standard deviation of NDWI	Markers calculated at parcel level on the basis of Sen4CAP available pre-
		calculated data
3	mean and standard deviation of pixel brightness	Markers calculated at parcel level on the basis of Sen4CAP available pre-
		calculated data
4	weekly backscatter mosaics, grouped by orbit type	Markers calculated at parcel level on the basis of Sen4CAP available pre-
	and polarization: ASC/DESC × VV/VH/VV÷VH	calculated data
5	weekly coherence mosaics, grouped by orbit type	Markers calculated at parcel level on the basis of Sen4CAP available pre-
	and polarization: ASC/DESC × VV/VH	calculated data
6	temporal features from the weekly temporal	Markers calculated at parcel level on the basis of Sen4CAP available pre-
	backscatter mosaics: mean value and coefficient of	calculated data
	variation × ASC/DESC × VV/VH/VV÷VH	
7	the standard deviation across the season (VV/VH)	Markers calculated at parcel level on the basis of Sen4CAP available pre-
	from the weekly coherence mosaics	calculated data
8	the minimum coherence value across each month	Markers calculated at parcel level on the basis of Sen4CAP available pre-
	(VV/VH) from the weekly coherence mosaics	calculated data
9	mean coherence value across each month (VV/VH)	Markers calculated at parcel level on the basis of Sen4CAP available pre-
	from the weekly coherence mosaics	calculated data
10	Sentinel L2A true color – imagery	Bounding box or parcel-clipped imagery for a specific date/time. Available on
		pre-processed data.
11	Sentinel L2A false color – imagery	Bounding box or parcel-clipped imagery for a specific date/time. Available on
		pre-processed data.
12	Sentinel 2 L3A NDVI	Parcel-level time-series statistics (average, mean, min, max; for each date/time)
		Available on Sen4CAP pre-calculated data.

Earth Observation API – Microservices (2)

	Service	Description
13	Sentinel 2 L3A NDVI – imagery	Bounding box or parcel-clipped imagery for a specific date/time. Available on pre-processed data.
14	Sentinel 2 L3A LAI	Parcel-level time-series statistics (average, mean, min, max; for each date/time) Available on Sen4CAP pre-calculated data.
15	Sentinel 2 L3A LAI - imagery	Bounding box or parcel-clipped imagery for a specific date/time. Available on pre-processed data.
16	Sentinel 2 L3A FAPAR	Parcel-level time-series statistics (average, mean, min, max; for each date/time) Available on Sen4CAP pre-calculated data.
17	Sentinel 2 L3A FAPAR – imagery	Bounding box or parcel-clipped imagery for a specific date/time. Available on pre-processed data.
18	Crop type mapping	Products (Sen4CAP does not refer to these as markers) calculated at parcel level on the basis of Sen4CAP available pre-calculated data
19	Grassland mowing detection	Products (Sen4CAP does not refer to these as markers) calculated at parcel level on the basis of Sen4CAP available pre-calculated data
20	Agricultural practices monitoring	Products (Sen4CAP does not refer to these as markers) calculated at parcel level on the basis of Sen4CAP available pre-calculated data
21	Interfield	Analysis of anomalies in the time-series of pixels of a parcel
21	Intrafield	Analysis of anomalies at scale using reference data

Traffic Lights API

NIVA meeting – 12/05/2020

Traffic Lights component API

- Provide an umbrella API capable to provide heterogeneous information from multiple sources that adhere to NIVA data model (semantics) specifications
- Use a standardised OGC compatible API. Information sources examples include:
 - Multiple EO classification engines (e.g. Sen4CAP)
 - geotagged photos applications
 - farm management information systems.

Traffic Lights component API - Microservices

	Service	Description
1	Crop type provision	Crop type classification information (e.g. Sen4CAP) registered with this common component as parcels attributes
2	Land type provision	Land type classification information (e.g. Sen4CAP) registered with this common component as parcels attributes
4	Selected Farm calendar entries provision	Farm management information such as calendar data will be provided as parcel's attribute- metadata
5	Geotagged photos provision	Geotagged photo applications that are registered with this common component.

AgroEnvironmental Linked Data API

NIVA meeting – 12/05/2020

AgroEnvironmental Linked Data API

- Publication of Linked Data API for different sources
- Previously Open Databases
- NIVA Databases as:
 - Crop type declarations
 - Parcels
 - Farm Registry
 - LPIS
- External Databases, models and ontologies

AgroEnvironmental Linked Data API

- Select pre-existing ontologies
- Complete a NIVA agroenviromental data model
- Clean the data to remove inconsistences or data problems
- Populate/publish de Linked Data Endpoint through ETL process

Next Steps

- Finalize D4.2 Technical Note
- Define a plan for the development of the common components including:
 - OpenEO Broker API
 - Back-end EO API services (Data, Processing) integration
 - Traffic Lights API services integration
 - Linked Data API services integration
 - Client Libraries (Python) to facilitate the integration into UC as open source library

THANK YOU!

